GEOLOGICAL AND PETROGRAPHICAL CHARACTERISTICS OF SORAP MASSIF GABBROS, RAS-KOH OPHIOLITE, BALOCHISTAN, WESTERN PAKISTAN

Main Article Content

Ali Mohammad Abdul Ghaffar Kashani Inayat Ullah M. Ishaq Kakar Fida Murad

Abstract

This study discussed the Sorap Massif which is the ophiolitic fragment composed of the upper mantle and lower crustal section of an ophiolitic sequence. An ophiolitic sequence in Sorap Massif consists of harzburgite, dunite, large distant units of serpentinized wehrlite intrusion and outcrop of confined layered gabbro covered by the Quaternary sand dunes. The basal part of gabbroic intrusion is in contact with mantle rocks and the upper part is juxtaposed with the Kuchakki Volcanic Group. On outcrop-level and in hand specimen, the gabbros exhibit needle-like ferromagnesian minerals including hornblende associated with plagioclase and pyroxene. Petrographically the gabbros are classified into norite, gabbro norite and gabbro. The mineral constituents of norite are plagioclase, orthopyroxene and amphibole, gabbro norite is consists of equal constituents of orthopyroxene and clinopyroxene, plagioclase and amphibole and the gabbro is composed of clinopyroxene, plagioclase and amphibole. The high constituents of minerals such as pyroxene, amphibole and low constituents of olivine in the Sorap gabbros indicates that these gabbros are formed by the immature part of the oceanic plate with dehydration of the oceanic plate subduction.

Article Details

How to Cite
MOHAMMAD, Ali et al. GEOLOGICAL AND PETROGRAPHICAL CHARACTERISTICS OF SORAP MASSIF GABBROS, RAS-KOH OPHIOLITE, BALOCHISTAN, WESTERN PAKISTAN. Journal of Mountain Area Research, [S.l.], v. 6, p. 1-11, july 2021. ISSN 2518-850X. Available at: <https://journal.kiu.edu.pk/index.php/JMAR/article/view/91>. Date accessed: 26 apr. 2024. doi: https://doi.org/10.53874/jmar.v6i0.91.
Section
Earth Sciences

References

[1] Participants. Penros field confress on ophiolite. Geotime, (1972). 17, P. 24-25.
[2] Brongniart, A. Sur le gisement ou position relative des ophiolites, euphotides, jaspes, etc. dans quelques parties des Apennins: Annales des Mines, Paris, (1821). v. 6, p. 177–238.
[3] Steinmann, G. Die ophiolitischen Zonen in den Medi terranean Kettengebirgen: Compte Rendu, XIVe Congres Géologique International, 1926, Madrid, Grafi cas Reunidas. (1927) v. 2, p. 637–667.
[4] Dewey, J.F., and Bird, J.M. The origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland: Journal of Geophysical Research. (1971) v. 76, p. 3179–3206, doi: 10.1029/JB076i014p03179.
[5] Coleman, R. G. What is an Ophiolite? In Ophiolites (pp. 1-7). Springer, Berlin, Heidelberg. (1977).
[6] Nicolas, A. Structure of Ophiolites and Dynamics of Oceanic Lithosphere: Dordrecht, the Netherlands, Kluwer Academic Publishers. (1989) 367 p.
[7] Dilek, Y., and Flower, M.F.J. Arc-trench roll-back and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman., Ophiolites in Earth History: Geological Society of London Special Publication, (2003) 218, p. 43–68.
[8] Cloos, M. Lithosphere buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts: Geological Society of America Bulletin, (1993) v. 105, p. 715–737, doi: 10.1130/0016-7606(1993)105 2.3.CO;2.
[9] Lagabrielle, Y., Guivel, C., Maury, R., Bourgois, J., Fourcade, S., and Martin, H. Magmatic-tectonic effects of high thermal regime at the site of active ridge subduction: The Chile triple junction model: Tectonophysics, (2000) v. 326, p. 255–268, doi: 10.1016/ S0040-1951(00)00124-4.
[10] Cawood, P.A., Kröner, A., Collins, W.J., Kusky, T.M., Mooney, W.D., and Windley, B.F. Accretionary orogens through Earth history in : Cawood, P.A. and Kröner, A. (Eds.), Earth Accretionary Systems in Space and Time, Geological Society of London Special Publication (2009) 318, p. 1–36.
[11] Lister, Gordon, and Marnie Forster. "Tectonic mode switches and the nature of orogenesis." Lithos 113.1-2 (2009): 274-291.
[12] Evarts, R. C., & RC, E. The geology and petrology of the Del Puerto ophiolite, Diablo Range, central California Coast Ranges. (1977).
[13] Miyashiro, A., The Troodos complex was probably formed in an island arc: Earth and Planetary Science Letters, (1973) v. 19, p. 218–224, doi: 10.1016/0012-821X (73)90118-0.
[14] Pearce, J. A., Alabaster, T., Shelton, A. W., & Searle, M. P. The Oman ophiolite as a Cretaceous arc-basin complex: evidence and implications. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, (1981). 300(1454), 299-317.
[15] Kakar M.I., Mahmood K., Khan M., Kasi A.K. and Manan R.A. Petrology and geochemistry of gabbros from the Muslim Bagh Ophiolite: implications for their petrogenesis and tectonic setting. Journal of Himalayan Earth Science, (2013). 46(1).
[16] Bédard, J. H. Cumulate recycling and crustal evolution in the Bay of Islands ophiolite. The Journal of Geology, (1991). 99(2), 225-249.
[17] Gnos, E., Khan, M., Mahmood, K., Villa, I.M., Khan, A.S., Age and tectonic setting of the Ras Koh ophiolites, Pakistan. Acta Mineralogica Pakistanica (2000). 11, 105–118.
[18] Siddiqui, R.H. Crustal Evolution of the Chagai–Raskoh Arc Terrane, Balochistan, Pakistan. Unpublished PhD Thesis, National Centre of Excellence in Geology, University of Peshawar, Pakistan. 2004.
[19] Nicholson, K. N., M. Khan, and K. Mahmood. "Geochemistry of the Chagai–Raskoh arc, Pakistan: Complex arc dynamics spanning the Cretaceous to the Quaternary." Lithos 118.3-4 (2010): 338-348.
[20] Jones, A.G. Reconnaissance Geology of Part of West Pakistan. A Colombo Plan Cooperative Project, Govt. of Canada, Toronto, (Hunting Survey Corporation Report) 1961. p. 550
[21] Arthurton, R.S., Farah, A., Ahmed, W. The Late Cretaceous–Cenozoic history of western Balochistan, Pakistan – the northern margin of the Makran subduction complex. In: Leggett, J.K. (Ed.), Trench Fore-Arc Geology. Geological Society London, Special Publication, (1982). 10, pp. 343–385.
[22] Siddiqui R H., Jan M Q., Khan M A. Petrogenesis of Late Cretaceous Lava Flows from a Ceno-Tethyan Island Arc: The Raskoh Arc, Balochistan, Pakistan. J Asian Earth Sci. (2012). 59: 24-28.
[23] Abdel-Gawad, M. Wrench movement in the Balochistan arc and relation to Himalayan-Indian ocean tectonics. Geological Society of America Bulletin (1971). 82, 1235–1250.
[24] Siddiqui R H. Magmatic evolution of Chagai-Raskoh arc terrane and its implication for porphyry copper mineralization. Geologica (1996). 2: 87-119.
[25] Jacob, K.H., Quittmeyer, R.L., The Makran region of Pakistan and Iran. Geodynamics of Pakistan. Geology Survey Pakistan, (1979) pp. 303–317
[26] Vredenburg, E. W. Recent artesian experiments in India. Office of the Geological survey. (1901).
[27] Coogan L.A., Jenkin G.R. and Wilson R.N. Constraining the cooling rate of the lower oceanic crust: a new approach applied to the Oman ophiolite. Earth and Planetary Science Letters, (2002). 199(1-2), 127-146.
[28] Thy P. Magmas and magma chamber evolution, Troodos ophiolite. Cyprus. Geology, (1987). 15(4), 316-319.
[29] Parlak O., HÖck V. and Delaloye M. Suprasubduction zone origin of the Pozanti-Karsanti ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. Geological Society, London, Special Publications, (2000). 173(1), 219-234.
[30] Dilek Y. and Eddy C.A. The Troodos (Cyprus) and Kizildag (S. Turkey) ophiolites as structural models for slow-spreading ridge segments. The Journal of Geology, (1992). 100(3), 305-322.
[31] Saccani E. and Photiades A. Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): implications for magma genesis in a forearc setting. Lithos, (2004). 73(3), 229-253.
[32] Girardeau J., Mercier J.C.C. and Xibin W. Petrology of the mafic rocks of the Xigaze ophiolite, Tibet. Contributions to Mineralogy and Petrology, (1985). 90(4), 309- 321.
[33] Gnos E., Khan M., Mehmood K., Khan A.S., Naseer A. and Igor M.V. Bela Oceanic lithosphere assemblage and its relation to the Reunion hot spot. (1998). Terra Nova, 10, 90-95.
[34] Cannat M., Sauter D., Mendel V., Ruellan E., Okino K., Escartin J., Combier V. and Baala M. (2006). Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology, 34, 605-608.
[35] Popal A., Kakar M.I. and Khan M. Geology and Petrology of Gabbroic rocks from the Khanozai Ophiolite, Northwestern Pakistan (2019)..
[36] Kakar M.I., Kerr A.C., Mahmood K., Collins A.S., Khan M. and McDonald I. (2014). Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: insights from geochemistry and petrology. Lithos, 202, 190-206.
[37] Boudier F., Nicolas A. and Ildefonse B. Magma chambers in the Oman ophiolite: fed from the top and the bottom. Earth and Planetary Science Letters, (1996) 144(1-2), 239-250.
[38] Kelemen P. and Aharonov E.. Periodic formation of magma fractures and generation of layered gabbros in the lower crust beneath oceanic spreading ridges. in Faulting and Magmatismat Mid-Ocean Ridges, Geophys. Monogr. (1998). Ser., edited by R. W. Buck et al., 106, 267-289. AGU, Washington, D. C.